Extensions 1→N→G→Q→1 with N=C32 and Q=C3xD8

Direct product G=NxQ with N=C32 and Q=C3xD8
dρLabelID
D8xC33216D8xC3^3432,517

Semidirect products G=N:Q with N=C32 and Q=C3xD8
extensionφ:Q→Aut NdρLabelID
C32:(C3xD8) = C3xC32:D8φ: C3xD8/C6D4 ⊆ Aut C32244C3^2:(C3xD8)432,576
C32:2(C3xD8) = He3:4D8φ: C3xD8/C8C6 ⊆ Aut C32726+C3^2:2(C3xD8)432,118
C32:3(C3xD8) = He3:6D8φ: C3xD8/D4C6 ⊆ Aut C327212+C3^2:3(C3xD8)432,153
C32:4(C3xD8) = C3xC32:2D8φ: C3xD8/C12C22 ⊆ Aut C32484C3^2:4(C3xD8)432,418
C32:5(C3xD8) = C3xC3:D24φ: C3xD8/C12C22 ⊆ Aut C32484C3^2:5(C3xD8)432,419
C32:6(C3xD8) = D8xHe3φ: C3xD8/D8C3 ⊆ Aut C32726C3^2:6(C3xD8)432,216
C32:7(C3xD8) = C32xD24φ: C3xD8/C24C2 ⊆ Aut C32144C3^2:7(C3xD8)432,467
C32:8(C3xD8) = C3xC32:5D8φ: C3xD8/C24C2 ⊆ Aut C32144C3^2:8(C3xD8)432,483
C32:9(C3xD8) = C32xD4:S3φ: C3xD8/C3xD4C2 ⊆ Aut C3272C3^2:9(C3xD8)432,475
C32:10(C3xD8) = C3xC32:7D8φ: C3xD8/C3xD4C2 ⊆ Aut C3272C3^2:10(C3xD8)432,491

Non-split extensions G=N.Q with N=C32 and Q=C3xD8
extensionφ:Q→Aut NdρLabelID
C32.(C3xD8) = D8x3- 1+2φ: C3xD8/D8C3 ⊆ Aut C32726C3^2.(C3xD8)432,217
C32.2(C3xD8) = C9xD24φ: C3xD8/C24C2 ⊆ Aut C321442C3^2.2(C3xD8)432,112
C32.3(C3xD8) = C9xD4:S3φ: C3xD8/C3xD4C2 ⊆ Aut C32724C3^2.3(C3xD8)432,150
C32.4(C3xD8) = D8xC3xC9central extension (φ=1)216C3^2.4(C3xD8)432,215

׿
x
:
Z
F
o
wr
Q
<